Search results for "Nonlinear refractive index"

showing 3 items of 3 documents

Measurement of high order Kerr refractive index of major air components: erratum

2010

A clarification is missing concerning the high order Kerr non-linearities deduced from our experimental data published in [Opt. Express 17, 13429-13434 (2009)]. Here, we rectify this omission by making explicit the distinction between cross-Kerr and Kerr effects, and by extrapolating the value of the nonlinear refractive index for the last effect. Since the occurrence of sign inversion in the Kerr effect is not affected, the overall report in [Opt. Express 17, 13429-13434] remains valid.

Kerr effect[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph](320.2250) Femtosecond phenomena; (350.5400) Plasmas; (190.7110) Ultrafast nonlinear optics; (260.5950) Self-focusing01 natural sciences010309 opticsOptics0103 physical sciencesZ-scan techniqueHigh order[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]010306 general physicsfemtosecondLaser beamsplasmaPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Molecular alignmentbusiness.industrySelf-focusingNonlinear refractive indexPolarization (waves)Atomic and Molecular Physics and Opticslaser filamentationbusinessRefractive index) Ultrafast nonlinear optics
researchProduct

COST 241 intercomparison of nonlinear refractive index measurements in dispersion shifted optical fibres at =1550 nm

1997

COST 241 measurements of the nonlinear refractive index, n/sub 2/, exhibit a large scatter depending on the specific measurement technique. This is largely due to the electrostrictive contribution to the Kerr nonlinearity, as is revealed by the resonant behaviour of n/sub 2/ (with peak values up to 3.9 10/sup -20/ m/sup 2/ W/sup -1/) observed with signal modulation frequencies in the 0.11 GHz range.

Range (particle radiation)Optical fiberMaterials scienceElectrostrictionKerr nonlinearitybusiness.industrySignal modulationResonanceNonlinear refractive indexlaw.inventionOpticslawDispersion (optics)Electrical and Electronic EngineeringAtomic physicsbusinessElectronics Letters
researchProduct

An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan t…

2003

International audience; The recently proposed spectral shear interferometry and the well-known z-scan techniques were employed for the determination of the nonlinear refractive index n2 of CS2, toluene and fused silica. The determined n2 values by both techniques were found to be in very good agreement. In addition, the role of the repetition rate of the laser is also investigated revealing its importance for the correct determination of both the size and the sign of the nonlinearity.

Shearing (physics)[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Carbon disulfide[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPhysics::OpticsGeneral Physics and AstronomyNonlinear refractive indexLaserToluenelaw.inventionchemistry.chemical_compoundNonlinear systemInterferometryOpticschemistrylawZ-scan techniquePhysical and Theoretical Chemistrybusiness
researchProduct